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This paper is concerned with the problem of the reflection of a plane
sound wave from a rigid plane which has a movable part in the form of a
rigid cylindrical piston. The force acting upon the piston from the side
of the fluid is determined. An integro-differential equation of motion
of the piston is constructed and its solution is given,

1. Assume that the plane sound wave, which has a pressure profile

z
P=Po<t+7'>, Po () =10 at <0

encounters the plane z = 0 at the instant t = 0 and is reflected from it.
After the reflection, in the axisymmetric case, the deformable part of
the plane will move with a velocity Vz = V(r, t), where V(r, 0) = 0, We
assume that the deformations are small, and we determine the pressure
for ¢t > 0. In order to do this, it is necessary to solve the wave equa-
tion

17 = ¢ap (1.1)

subject to the conditions
ap v

F il LTy

P = po (2t) at z=ct

at z=20

1084



Reflection of sound waves from a plane 1085

Here ¢ = const is the speed of sound in the fluid, p, = const is the
density of the fluid. Let

p=p 2+ p(rt2)

where p;(t, z) is the solution corresponding to the reflection from a
rigid plane [ 1]

pa=no+ ) s n(-3)

Then, in order to determine py(r, t, z) it is necessary to solve Equa-
tion (1.1) with the conditions

op; ov
;;:—pra—f at z=0, ' pp=0 at

[3]

=ct (1.2)

(the first condition holds at the deformable part of the plane). The
solution of Equation (1.1) with the conditions (1.2) is given in the
form [ 2 ]

2n t

cpo { ,
Pz(",t,z)Z%‘qu) ng n, t—T1)dt (

0 z/c

N=V¥rt+ L4 2rL cosg
L = Jc? — 32 )
2. Let the deforming part of the plane be represented by a movable

rigid piston placed into a cutout in the plane. In this case V= V(t) and
at the surface of the piston z= 0

pe (r, 1, 0) = Z%SSV (t — <) dods
S

With fixed r and t the limits of integration with respect to ¢ and r
are determined from the conditions of the intersection of a circle of
radius R (R 1s the radius of the piston) with a circle of radius ¢t whose
center lies at a distance r from the axis of the piston (Fig. 1).

Depending on the values of r and t three cases are possible:

First Case. 0 < t < (R— r)/c; (Fig. 1,a)

27 i

P W = ¢ V
P (rt,0) =5\ dp \ V't — ) dr =cpa V (9
0 0
The total pressure is
p(r, 8, 0) = 2pg (¢) + cpaV (¢) (2.1)

Second Case. (R— r)/c < t < (R+ r)/c; (Fig. 1,b)
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20—y t po2 T
. :
a (r, t,0)=§-?—:—[ g quSV’(t——':)d«:—{— S dcng’(t-»fc)dr]z
Po o —%s 0

Pa

_ cpo{

= cpgV (:)—-—n— V{i—T)de
0

The total pressure is

CPe

p(r, 2, 0) = 2po (&) + epsV (1) — -\ V (¢ —T) do 2.2)

QL/"GQG

Third Case. (R+ r)/e < t < = (Pig. 1,c¢)

on T ™
P2 (r, 1, 0)=-—”§;‘;S g iv* (t — ) dr = coV (1) — %‘;ﬁgv (¢t —T) dg,
] 0 ]

The total pressure is

.
P01, 0) = 2p (1) + o (&) — 2\ v ¢ =Ty ag (2.3)
4]
Here
1 RE— %22
¢o = COS lm.__T';.J_cw, T = VY R? — r*sin?¢@ — rcosq, T(r,) =1t

The compressive force, which acts upon the piston from the fluid side,
is

R
F ) = SS p(r,t,0)do=2n Sp (r, t, 0) rdr
r<R 0

At t = 0 a3 cylindrical wave appears nesar the edges of the piston,
which then propagates with velocity ¢ towards the center of the piston.
The wave front r® = R— ct divides the sarface of the piston into two
regions. For t < R/c¢ in the first region ahead of the wave front, where
0 r<r® t< (R- r)/c, the pressure is determined from the formula
(2.1); in the second region behind the wave front, where r° < » < R,
(B— rY/e< t < (R+ r)/c, the pressure is determined from the formula
(2.2). Thus we shall have

R—cl R

Fif)=2n X [2p0 (1) 4 cpeV (O] rdr + 25 S {Zpo ) + ooV (t) —
R ¢t
@ (1,1) ° ‘
g

S % V [t—T(r, )l dcp} rdr= nR? [2py (1) 4 cpoV ()] — 2cpe@n
0
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R b
O = S rdr x VIieE—T (r;e)l do
R—ct 0

In order to evaluate the integral @1 we let
t—T(r, g =n, t(rnl)=t—R—r)/c T (ry@o) =0

and, after interchanging the order of integration, we obtain

t

! -

R
_ ¥ (r) rdr . c(t—1) 2
cnl_§V(r)drR§ct(t_T)w___w_(r_)_cH§ 1_[~———ZR J V(t)dr
R2— r2 2 (t — 1)2
¥ (r) = ;RZL(f_(T) L, @2.4)

At the instant ¢t = R/c the wave reflects at the center and then goes
to the edge; the wave front is at r® = ¢t — R, In the time interval
R/ec £ t < 2R/c in the first region ahead of the reflected wave fromt,
where r°< r< R, R/fe< t< (R+ r)/c, the pressure is determined by
Pormula (2.3). In the second region behind the reflected wave front,
where 0 < r< r°, (R+ r)/e< t< 2R/e, the pressure is determined by
Formula (2.2). As a result we obtain

R

F (1) = 2n S {2po (2) -+ cpoV {t) — %’SV [t — T (r, )] dq)} rdr +
ct—Rcz_R @olr, t)0
+ 21 S {2po (t) 4 epoV (2) _%f:_o S VieE—T(r, ¢)] dq>} rdr
0 0
= nR? [2pg (t) + cpaV(t)] — 2cpyD;

Here
ct—R @ofr, t) I'% T
O, = S rdr S VIt—T(r,0)ldp + S rdr SV [t —T (r,o)l dp = @y
0 0 ct—R

This result is obtained by calculations similar to those performed
before.

For the time interval 2R/c < t < o the pressure is determined by
Formula (2.3); thus

R E,J
Foy =2 {2 @) + o 0 — L\ e —1 (. do ) rar
0 0

= tR? [2po (t) + cpdV (2)] — 2cpy®s

After some calculations we have
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oa=§rdr§v [t =T (r, )l dp = R ]/1— 72 v as
0

—2R/c

(=]

Thus, for the time interval 0 < t < 2R/e, in which the wave that comes
from the edge of the piston will reach the center and after reflection at

the center will return to the edge, we have
]

F (t) = nR? [2po (1) + cpaV (1)] — 2¢*poR 81/1 — [c—(tz——;r)-rv (x)dr  (2.5)

0

For the time interval 2R/c < t < o we have

F (1) =R [2po (8) + cooV (1)] — 26%poRt S V[0 —[Y7 v @ 2o

t—2R/c

3. Let us construct the equation of motion of the piston. We denote

its displacement by u(t), and obtain
du du
nRhp m=F () — F, (m:——V(i))

Here p is the density, h is the thickness of the piston, Fr is the
reaction force which acts upon the piston from the opposite side. Assume

that

du
Fo=c 7+ cou

Now we shall transform to nondimensional quantities
ct u Rp,
h=35p, W=3p, Pol——[‘hpcz
After dropping the subscript 1 we obtain the equation of motion of the
piston in the form

t
—p+ e\ VT T @as 0<e<n @)

[

w? (1) + 2au’ (1) + Bu ()
t

=pt)+e 8 Vi = (1)dr (1<Kt <oo) (3.2)
t—1

w’ (1) + 200’ (&) + fu ()

where

]
2

n o 4eo

a:——s—e-}—ﬁm, B:W, € (3.3)

|
aoo
3]

The initial conditions have the form
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u (0) = 0, w (0) =0 (3.4)

From this we see that the motion of a cylindrical piston under the
action of an incident wave is described by an integro-differential equa-
tion, which cannot be reduced to a differential equation, unlike that of
the slab-like piston [1 ]. Note that for 1< ¢t< 2

¢ t 1
S ]/1~(t—'\:)zu’(t)d'c=S]/1—(t—x)%’(t)d’:—{— \ V1i—(@—<) (x)de
t—1 i t—1

Here the second integral on the right-hand side is known if we find
the solution for ¢ < 1, and in general for n< t< n+ 1 (n=1, 2, ...)
t t n
\ v mac =\ VT— = @ac + | VIm =00 0 o
t—1 n t—1
where the second integral on the right-hand side is known if we find the

solution for t < n. The solution of Equations (3.1) and (3.2) can be re-
presented in the form

t
u () = Sp(t—r)q(t)dc 0<t<) (3.5)
t—n ’ t—n n
vy =\ pu—vimate ([ | vico=—tv @ -
0 0 t—t—1

—u ) VIZE— T g () ds + u (m) g’ (¢ — ) +1u' () + 200 ()] g (¢ — )
(n<<et<n+1) (3.8)

where g(t) is the solution of the equation
¢

g’ (t) + 2aq" (t) + Bg (&) — eg]/-l — (t—)P¢ (x)dx =0 o<ty 3.7
U
with the initial conditions

q(0)=0, 7 ©0) =1 (3.8)

4. Let us find the exact solution of Equation (3.7) with the condi-
tions (3.8). If it is assumed that

t t
W= @ma=qn- SW‘—_’—; (x) s
0

then Equation (3.7) can be written as follows:
t

7" () +2eq @)+ B —e)g(t)=—c¢ glr_f_

1)2 (x) dx (4.1)
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We shall seek a solution in the form of a series in the parameter €,
which is determined according to (3.3), by letting

7)) =q @ +eq )+ @) +... (4.2)

Substituting the series (4.2) into Equation (4.1), collecting terms which
contaln equal powers of ¢, and equating their sum to zero leads to a
system of ordinary differential equations with constant coefficients:

q" () + 20" (1) + (B — &) g (8) =0 (4.3)
t

{—1
g, )+ 2ag, &) + B— &) g, )= SVT‘-———

w5 gy, (t)dr (n=1,2, ...)

with the initial conditions
3,0 =0 (r=041,...), o 0=1, ¢/ 0O)=0 (@n=12..) (4.5)

These equations can be easlly solved successively:

1.
o (1) = 55 (€™ — &™), Ma2=—ato, o=Vaiife—p (4.8)

where @ can also be imaginary
¢ E - E
0 () = —§q0(:—r>dr§mqﬂ_ltg>ds
T—¢§

Vi—@—%)y
—&

H
- Sq,.,..l @z | @ (i— ) dr

O e

H
—E T
=—§ nul(g) 43 § VI————E__)é g (1) dT
or
t i
(t)—-——wSK(t—-'r.) (x) dt K(t)=§—~t-:1—q(f)ti‘r (4.7
In ; q“...l ’ ; ﬂﬂ o .

We shall prove the convergence of the series (4.2) by utilizing
obvious estimates

lq0(t) | <M, M =max|g ()l fK(t)1<Sw () A< M

. —(t — 1)

i "

ln@i<{IEe—olm@ic < (nei<mg
1]

| g0 B <M™
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Then

e <] - m
l 2 e"qn(t)|< N et g, 1] < D) e"MH = MM
n=0 n=0

n=0

Thus, the exact solution of Equation (3.7) with the conditions (3.38)
is represented in the form of a series (4.2) which converges uniformly
for all values of ¢t < 1 and any parameter €.

However, for € > 1 the solution in the form of the series is incon-
venient from practical considerations. We shall derive an approximate

solution. For this purpose we shall expand the root v/ 1 - t2 in a series
co
- 2n 41
VIi—2= ) a,cosy,t (‘yn= 3 71:) (4.8)
n=o
1
Jilry) e J1(1,)
JR— 7t Y1\ln n n
SVi—tﬁcosyntdl=—§-T=7, or “n=“T
0

where J1 is the Bessel function of the first order. One can show that the
series (4.8) converges uniformly for all t and rather rapidly at that,
since it follows from the properties of Bessel functions that

="V
R

a for large n

n

We write out several of the first terms of the series (4.8):

3 5n n
VT == 1433 cos 5 t—0.188cos 5 ¢ - 0.084c0s % £ — 0.050 cos g +. . .

In the first approximation we retain only one term of the series, i.e.
we let

n
V1 —?=1.133¢cos 5 ¢ (4.9)

Substitution of (4.9) into Equation (3.7) ylelds
t
n !
Ligy= 0" () + 200’ () +Ba () — & oo (6 — %) ¢’ (5 dx = 0

0
q (0)=0, ¢ 0)=1 (e1 = 1.133 &)

Let us apply the one-sided Laplace transform and denote by g¢®*(A) the
transformation of the function gq(1):

o]

- A? .
SL {qy e Mat =()\2 + 2ak + B — smz) AN —-1=0
0
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From this
YA 1
7" ()= P (7\.) ‘l’l(;\«) == A% Tﬂiz
@A) =M+ 200 4 (Tt B—e)A* +
+;—x2 ah +~§-n2ﬁ (4.10)

In order to find the inverse trans-
form ¢(t) it is necessary to know the
roots of the function ¢(A). Let us

study the roots of the equation Fig. 2.
@$(A) = 0 by replacing it by its
equivalents

=m0 n@ =2 tPoe W)= g

The real roots of the equation are those values of A for which the
curves of the functions ylak) and yz(k) intersect each other (Fig. 2).

Two cases are possible. If

ﬁ>ﬁ—m+4/$—uﬁ “ﬂ@+ﬁ%kmm iﬂz

then there exist two real negative and two complex roots, whose real
parts are positive, according to the Hurwitz criterion. If

2t<p—at+ ) B—e) + R Bre)+ ot — g

then all four roots are complex conjugate. The conditions were derived
from the inequality y,(- @) < y,{(~ a). The inverse Laplace transform-
ation will yield the original function

P (h) oMt ‘P(M) oMt W(la) oMl P (Aa) R
0= ¢ Ty e G v R

where A, Ay, Ay, and A, are the roots of function (4.10). The replace-
ment of the kernel by (4.9) is equivalent to neglecting in the solution
harmonics with a high frequency and small amplitude.

I am grateful to Kh, A. Rakhmatulin for the attention he has paid to
my work.
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